

Input-Output Stability of Gradient Descent: A Discrete-Time Passivity-Based Approach

Sepehr Moalemi James Richard Forbes

McGill University, Department of Mechanical Engineering

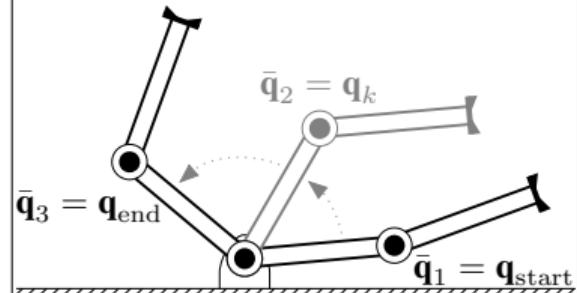
McGill

DECAR

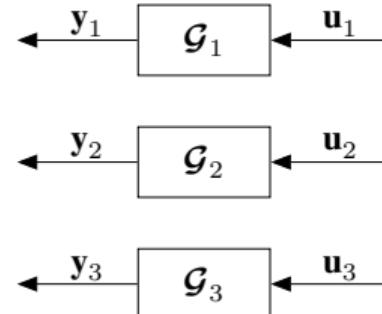
July 8, 2025

Inspiration from Gain-Scheduling

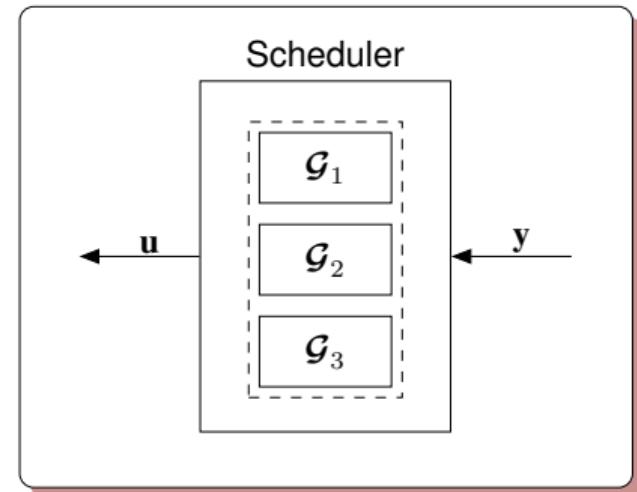
(a) Linearize the system about $N = 3$ points



(b) Synthesize controllers

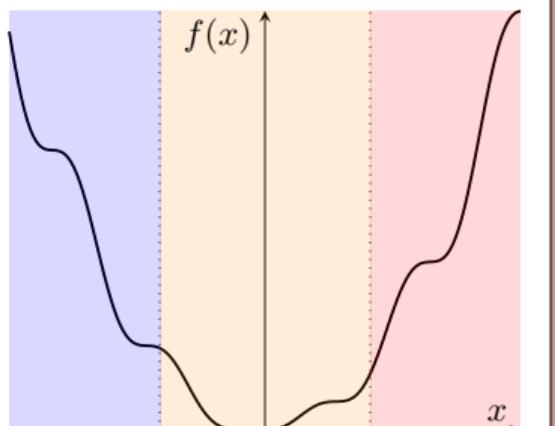


(c) Gain-schedule the controllers

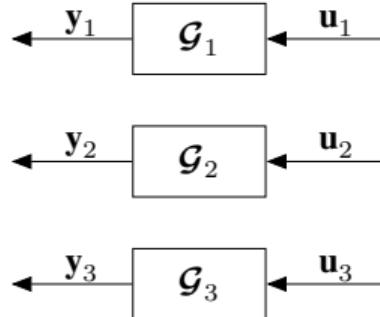


Gain-Scheduling Optimization Algorithms

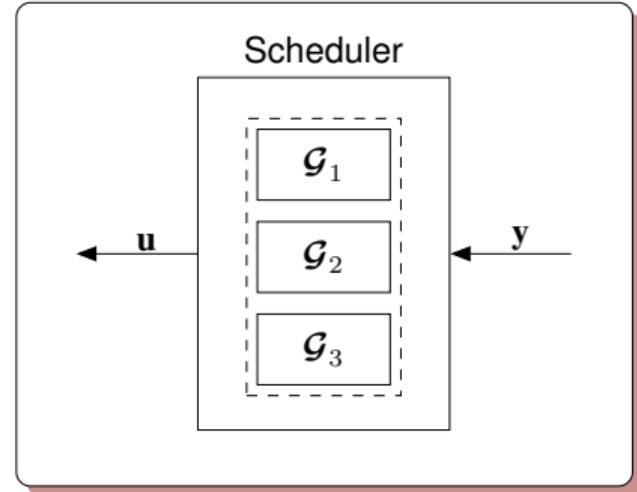
(a) Divide the domain of interest



(b) Synthesize controllers



(c) Gain-schedule the controllers



Motivating Example [Polyak, 1987]

Given the Gradient Descent (GD) algorithm with the update rule

$$x^{k+1} = x^k - \alpha \nabla f(x^k), \quad (1)$$

consider minimizing $f(x) = \frac{L}{2}x^2$ over $x \in \mathbb{R}$ with $L > 0$.

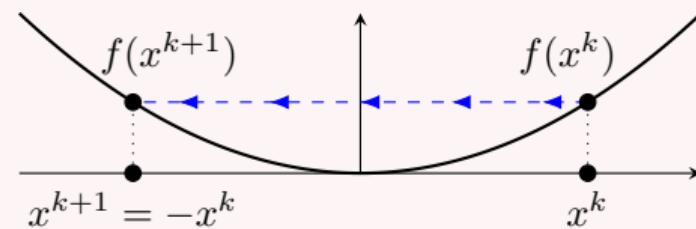
Remark

The GD algorithm converges to the minimum for any step size $0 < \alpha < \frac{2}{L}$.

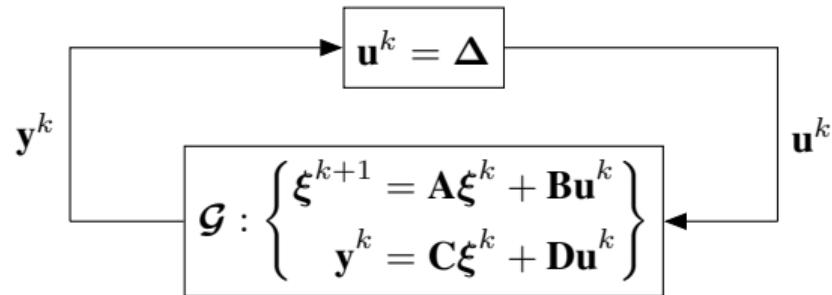
Question

What happens for $\alpha = \frac{2}{L}$?

- The GD algorithm does not converge.
- However, it is still stable.



Special Case of the Lur'e Problem [Lessard, Recht, Packard, 2015]



For the special case of $\mathbf{A} = \mathbf{1}$, $\mathbf{B} = -\alpha \mathbf{1}$, $\mathbf{C} = \mathbf{1}$, and $\mathbf{D} = \mathbf{0}$, it follows that

$$\mathcal{G} : \begin{cases} \xi^{k+1} = \xi^k - \alpha \mathbf{u}^k \\ \mathbf{y}^k = \xi^k \\ \mathbf{u}^k = \nabla f(\mathbf{y}^k) \end{cases} \iff \xi^{k+1} = \xi^k - \alpha \nabla f(\xi^k) \quad (\text{GD})$$

Introduction to Passivity

Definition (Passivity in Discrete Time [Desoer, Vidyasagar, 1975])

Consider a square system with input $\mathbf{u} \in \ell_{2e}$ and output $\mathbf{y} \in \ell_{2e}$ mapped through the operator $\mathcal{G} : \ell_{2e} \rightarrow \ell_{2e}$. The system \mathcal{G} is

- ▶ **passive** if $\exists \beta \in \mathbb{R}_{\leq 0}$ s.t.

$$\langle \mathbf{y}, \mathbf{u} \rangle_T \geq \beta, \quad \forall \mathbf{u} \in \ell_{2e}, \forall T \in \mathbb{Z}_{>0}, \quad (2)$$

- ▶ **input strictly passive (ISP)** if $\exists \delta \in \mathbb{R}_{>0}$ and $\exists \beta \in \mathbb{R}_{\leq 0}$ s.t.

$$\langle \mathbf{y}, \mathbf{u} \rangle_T \geq \beta + \delta \|\mathbf{u}\|_{2T}^2, \quad \forall \mathbf{u} \in \ell_{2e}, \forall T \in \mathbb{Z}_{>0}, \quad (3)$$

- ▶ **very strictly passive (VSP)** if $\exists \delta, \varepsilon \in \mathbb{R}_{>0}$ and $\exists \beta \in \mathbb{R}_{\leq 0}$ s.t.

$$\langle \mathbf{y}, \mathbf{u} \rangle_T \geq \beta + \delta \|\mathbf{u}\|_{2T}^2 + \varepsilon \|\mathbf{y}\|_{2T}^2, \quad \forall \mathbf{u} \in \ell_{2e}, \forall T \in \mathbb{Z}_{>0}. \quad (4)$$

Passivity Theorem

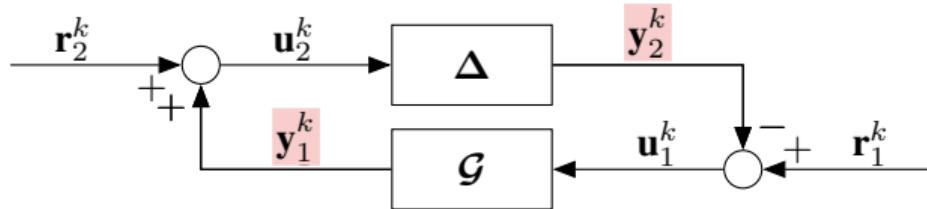


Figure 1: The negative feedback interconnection of two systems \mathcal{G} and Δ .

Theorem (Passivity Theorem [Desoer, Vidyasagar, 1975])

Consider two systems $\mathcal{G} : \ell_{2e} \rightarrow \ell_{2e}$ and $\Delta : \ell_{2e} \rightarrow \ell_{2e}$ in negative feedback as per Figure 1.

- **Strong:** If \mathcal{G} is passive, Δ is VSP, and $\mathbf{r}_1, \mathbf{r}_2 \in \ell_2$, then $\mathbf{y}_1, \mathbf{y}_2 \in \ell_2$.
- **Weak:** If \mathcal{G} is passive, Δ is ISP, $\mathbf{r}_1 \in \ell_2$, and $\mathbf{r}_2 = \mathbf{0}$, then $\mathbf{y}_1 \in \ell_2$.

Passivity Preserving Gain-Scheduling Architecture [Damaren, 1996]

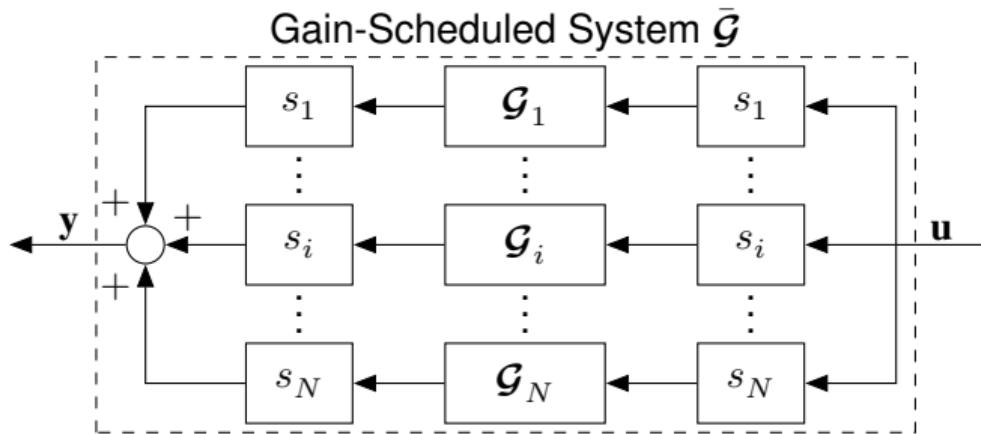


Figure 2: Gain-scheduling of N passive subsystems using scheduling signals s_i , resulting in an overall passive gain-scheduled system $\bar{\mathcal{G}}$.

Characterization of Passivity

Lemma (Passivity of an LTI [Hitz and Anderson, 1969])

A dynamical system of the form

$$\begin{cases} \xi^{k+1} = A\xi^k + Bu^k, \\ y^k = C\xi^k + Du^k, \end{cases}$$

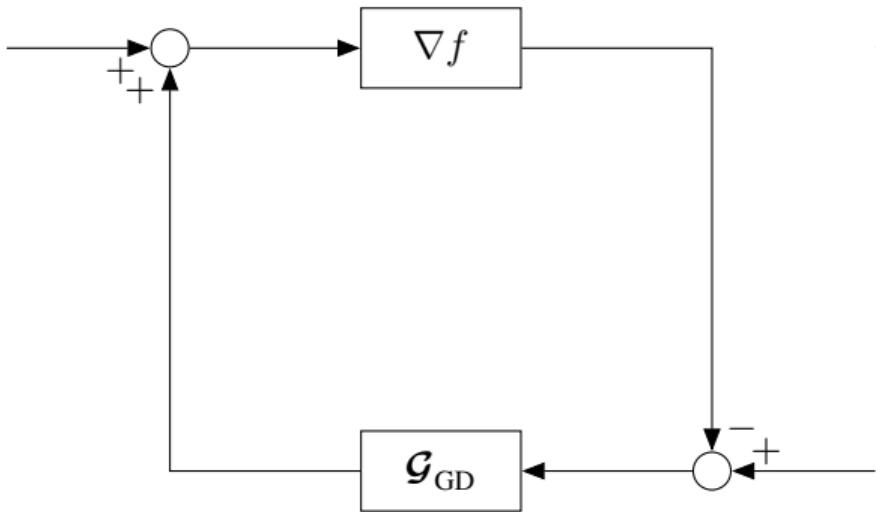
is **passive** if and only if $\exists P = P^T \succ 0$ such that

$$\begin{bmatrix} A^T P A - P & A^T P B - C^T \\ (A^T P B - C^T)^T & B^T P B - (D + D^T) \end{bmatrix} \preceq 0. \quad (5)$$

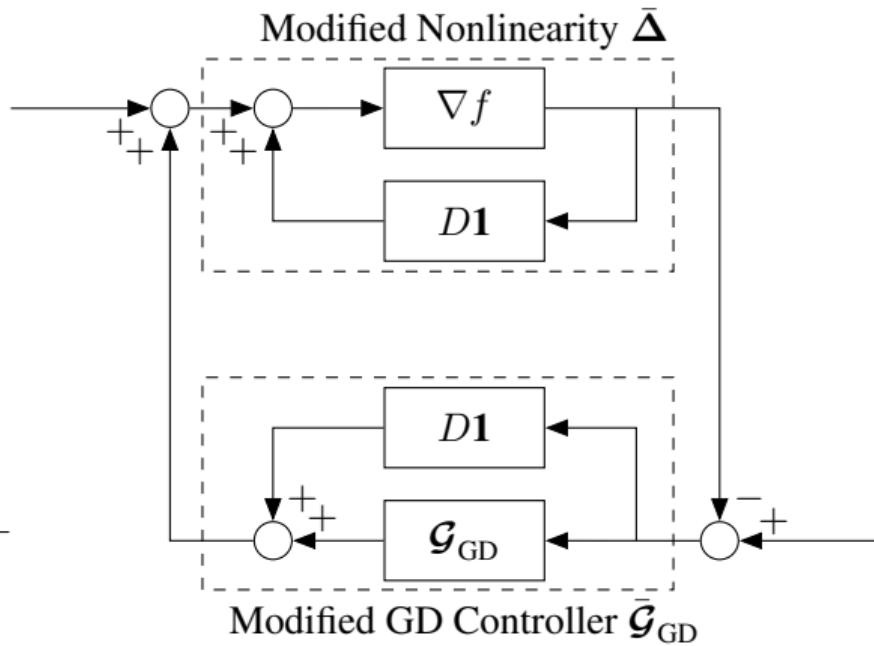
Remark ([Byrnes and Lin, 1994])

Discrete-time systems having outputs independent of u^k (i.e., $D = \mathbf{0}$) can **never be passive**.

Loop Transformation



(a) GD algorithm as a Lur'e problem.



(b) Loop transformation of GD algorithm.

When is $\bar{\mathcal{G}}_{GD}$ Passive?

$$\bar{\mathcal{G}}_{GD} : \left[\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D} \end{array} \right] = \left[\begin{array}{c|c} \mathbf{1} & \alpha \mathbf{1} \\ \hline \mathbf{1} & D \mathbf{1} \end{array} \right]$$

Review ([Hitz and Anderson, 1969])

$$\begin{bmatrix} \mathbf{A}^T \mathbf{P} \mathbf{A} - \mathbf{P} & \mathbf{A}^T \mathbf{P} \mathbf{B} - \mathbf{C}^T \\ (\mathbf{A}^T \mathbf{P} \mathbf{B} - \mathbf{C}^T)^T & \mathbf{B}^T \mathbf{P} \mathbf{B} - (\mathbf{D} + \mathbf{D}^T) \end{bmatrix} \preceq 0 \quad (5)$$

Lemma

The modified GD controller $\bar{\mathcal{G}}_{GD}$ is passive if and only if $0 < \alpha/2 \leq D$.

Remark

Given a new algorithm with minimal realization $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$, the LMI in (5) can numerically be solved for $\mathbf{P} = \mathbf{P}^T \succ 0$ and $\mathbf{D} = D \mathbf{1}$.

Passivity of $\bar{\Delta}$

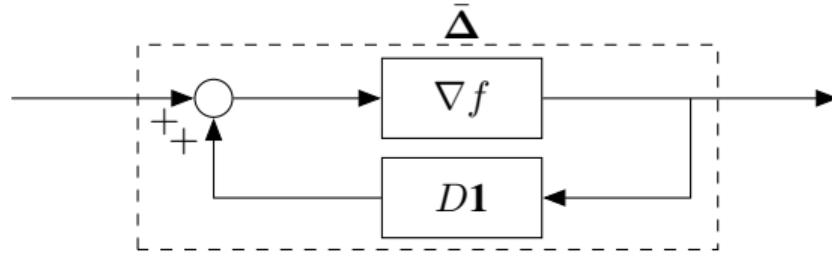


Figure 4: Positive feedback interconnection of ∇f and $D1$ resulting in the discrete-time system $\bar{\Delta}$.

Sector-Bounded Gradient

Definition (Function class $\mathcal{S}_{m,L}$)

Denote the set of functions having a unique minimizer, \mathbf{x}^* , and a sector-bounded gradient as $\mathcal{S}_{m,L}$.

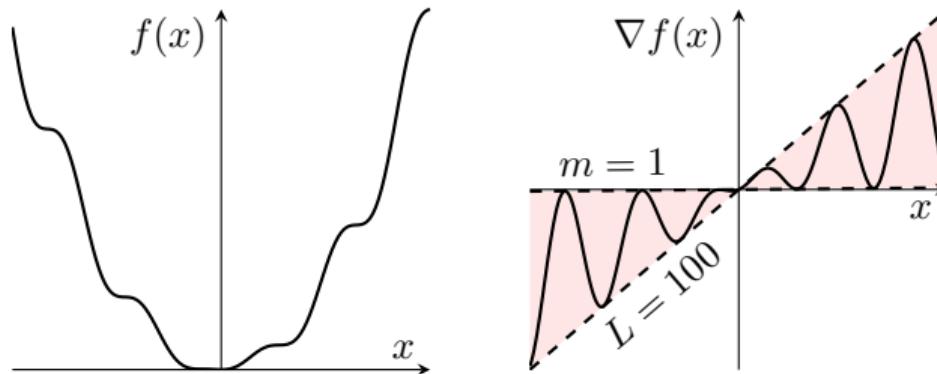


Figure 5: The function $f(x) = \frac{L-m}{4} \left(\frac{L+m}{L-m} x^2 + 2 \sin(x) - 2x \cos(x) \right) \in \mathcal{S}_{m,L}$ with $m = 1$ and $L = 100$. This function is non-convex but has a sector-bounded gradient and a unique global minimizer at $x^* = 0$ [Ugrinovskii, Petersen, Shames, 2022].

Passivity of $\bar{\Delta}$

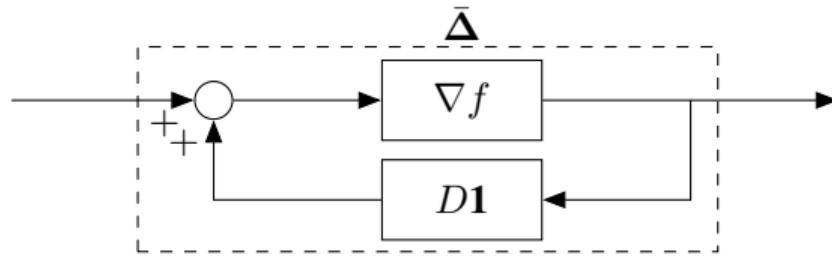


Figure 4: Positive feedback interconnection of ∇f and $D1$ resulting in the discrete-time system $\bar{\Delta}$.

Lemma

Given $f \in \mathcal{S}_{m,L}$ and $D \in \mathbb{R}_{>0}$, consider the positive feedback interconnection of ∇f and $D1$ resulting in the discrete-time system $\bar{\Delta}$ as per Figure 4.

- ▶ For $D < 1/L$, $\bar{\Delta}$ is VSP.
- ▶ For $D = 1/L$, $\bar{\Delta}$ is ISP.

Main Result: Input-Output Stability of GD

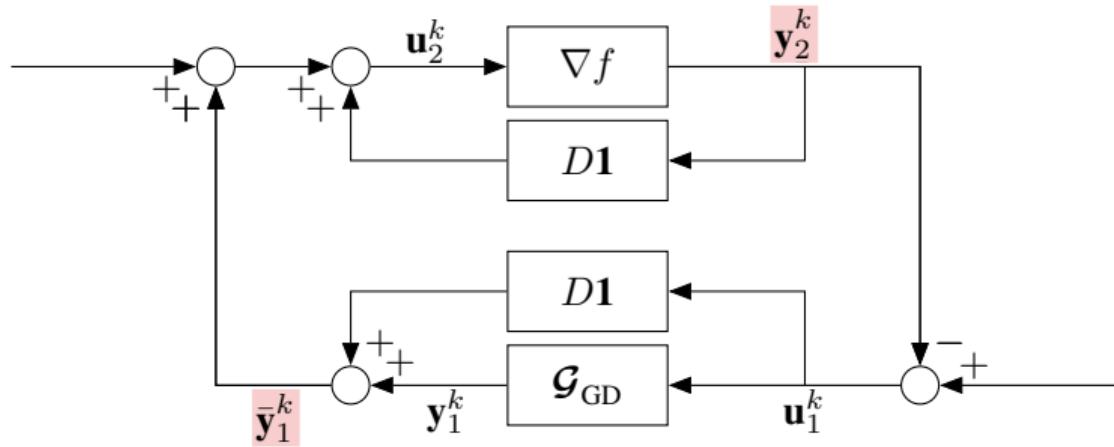


Figure 7: Loop transformation of the negative feedback interconnection representation of the GD method.

Theorem (Input-output stability of GD)

Consider the GD method shown in Figure 7, where $f \in \mathcal{S}_{m,L}$ and $D = \alpha/2$.

- Provided the step size $\alpha \in (0, 2/L)$, then $\bar{y}_1^k, y_2^k \in \ell_2$.
- Provided the step size $\alpha = 2/L$, then $\bar{y}_1^k \in \ell_2$.

Main Result: Input-Output Stability of GD

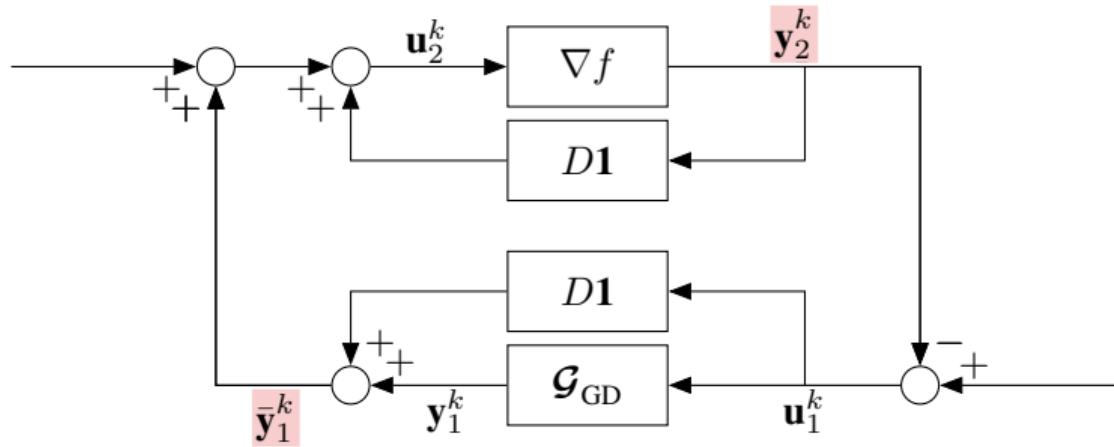


Figure 7: Loop transformation of the negative feedback interconnection representation of the GD method.

Theorem (Input-output stability of GD)

Consider the GD method shown in Figure 7, where $f \in \mathcal{S}_{m,L}$ and $D = \alpha/2$.

- Provided the step size $\alpha \in (0, 2/L)$, then $\mathbf{x}^k - D\nabla f(\mathbf{x}^k) \rightarrow \mathbf{x}^*$ and $\nabla f(\mathbf{x}^k) \rightarrow \mathbf{0}$.
- Provided the step size $\alpha = 2/L$, then $\mathbf{x}^k - D\nabla f(\mathbf{x}^k) \rightarrow \mathbf{x}^*$.

Extension to Time Varying Step Sizes

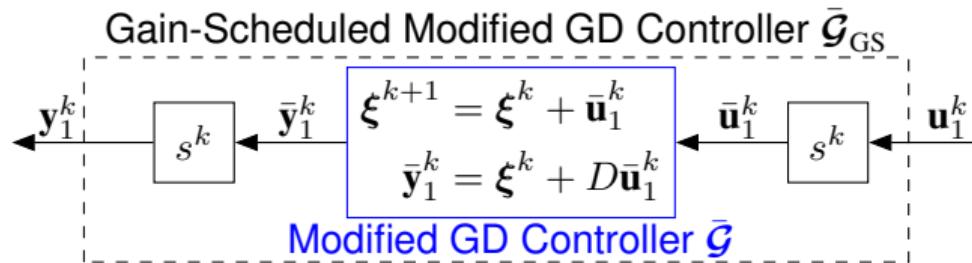


Figure 8: Gain-scheduling a modified GD controller $\bar{\mathcal{G}}$ with step size $\alpha = 1$. The scheduling function s^k is used to scale the input and output of $\bar{\mathcal{G}}$.

The negative feedback interconnection of $\bar{\mathcal{G}}_{GS}$ and $\bar{\Delta}$ represents a variation on the GD algorithm with the update rule

$$\mathbf{x}^{k+1} = \mathbf{x}^k - s^k \nabla f(s^k \mathbf{x}^k). \quad (6)$$

- ▶ Provided $\max_{k \in \mathcal{T}} |s^k| \in (0, \sqrt{2/L}]$, then $\mathbf{y}_1^k \in \ell_2$.
- ▶ For a constant $s^k = s$, the update rule in (6) can be written as $\bar{\mathbf{x}}^{k+1} = \bar{\mathbf{x}}^k - s^2 \nabla f(\bar{\mathbf{x}}^k)$.

Numerical Results

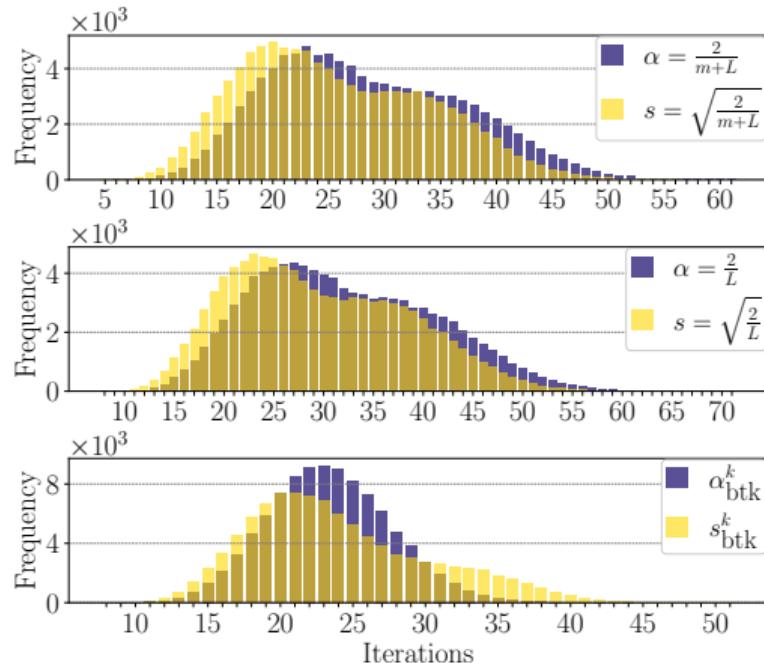


Figure 9: #Iterations needed to achieve $|\nabla f(x^k)| < 10^{-12}$ using 10^5 uniformly sampled initial conditions for $x^0 \in [-10^5, 10^5]$.

Table 1: Corresponding Mean, Median, and Mode

Parameter	Mean	Median	Mode
$\alpha = 2/(m+L)$	28.36	27	23
$s = \sqrt{2/(m+L)}$	25.68	25	20
$\alpha = 2/L$	32.12	31	27
$s = \sqrt{2/L}$	29.50	28	23
α_{btk}^k	23.38	23	23
s_{btk}^k	24.08	23	21

Summary

After performing a loop transformation:

- $\bar{\mathcal{G}}_{\text{GD}}$ is passive if and only if $0 < \alpha/2 \leq D$.
- For $f \in \mathcal{S}_{m,L}$, $\bar{\Delta}$ is
 - VSP, for $D < 1/L$, or
 - ISP, for $D = 1/L$.

For $D = \alpha/2$, from the Passivity Theorem, it follows that:

- Provided $\alpha \in (0, 2/L)$, then $\mathbf{x}^k - D\nabla f(\mathbf{x}^k) \rightarrow \mathbf{x}^*$ and $\nabla f(\mathbf{x}^k) \rightarrow \mathbf{0}$.
- Provided $\alpha = 2/L$, then $\mathbf{x}^k - D\nabla f(\mathbf{x}^k) \rightarrow \mathbf{x}^*$.

Gain-scheduling $\bar{\mathcal{G}}_{\text{GD}}$ using the scheduling function s^k results in the update rule

$$\mathbf{x}^{k+1} = \mathbf{x}^k - s^k \nabla f(s^k \mathbf{x}^k).$$



Figure 10: Loop transformation of GD algorithm

References

- ▶ B. Polyak, *Introduction to Optimization*. USA: Optimization Software, Inc., 1987.
- ▶ L. Lessard, B. Recht, and A. Packard, “Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints,” *SIAM Journal on Optimization*, vol. 26, no. 1, pp. 57–95, 2016.
- ▶ C. Desoer and M. Vidyasagar, *Feedback Systems: Input-Output Properties*. USA: Academic Press, Inc., 1975.
- ▶ C. J. Damaren, “Gain-Scheduled SPR Controllers for Nonlinear Flexible Systems,” *Journal of Dynamic Systems, Measurement, and Control*, vol. 118, no. 4, pp. 698-703, 1996.
- ▶ L. Hitz and B. Anderson, “Discrete Positive-Real Functions and their Application to System Stability,” *Proceedings of the IEE*, vol. 116, no. 1, pp. 153–155, 1969.
- ▶ C. I. Byrnes and W. Lin, “Losslessness, Feedback Equivalence, and the Global Stabilization of Discrete-Time Nonlinear Systems,” *IEEE Transactions on Automatic Control*, vol. 39, no. 1, pp. 83-98, 1994.
- ▶ V. Ugrinovskii, I. R. Petersen, and I. Shames, “Global Convergence and Asymptotic Optimality of the Heavy Ball Method for a Class of Nonconvex Optimization Problems,” *IEEE Control Systems Letters*, vol. 6, pp. 2449-2454, 2022.