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Inspiration from Gain-Scheduling

(a) Linearize the system about N = 3 points

q̄1 = qstart

q̄2 = qk

q̄3 = qend

(b) Synthesize controllers
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y1 u1

y2 u2
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(c) Gain-schedule the controllers

Scheduler
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Gain-Scheduling Optimization Algorithms

(a) Divide the domain of interest

x

f(x)

(b) Synthesize controllers
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(c) Gain-schedule the controllers

Scheduler
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Motivating Example [Polyak, 1987]
Given the Gradient Descent (GD) algorithm with the update rule

x
k+1

= x
k − α∇f(x

k
), (1)

consider minimizing f(x) = L
2 x

2 over x ∈ R with L > 0.

Remark
The GD algorithm converges to the minimum for any step size 0 < α < 2

L .

Question
What happens for α = 2

L?

▶ The GD algorithm does not converge.
▶ However, it is still stable.

xk

f(xk)

xk+1 = −xk

f(xk+1)
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Special Case of the Lur’e Problem [Lessard, Recht, Packard, 2015]

uk = ∆

G :

{
ξk+1 = Aξk + Buk

yk = Cξk + Duk

}yk uk

For the special case of A = 1, B = −α1, C = 1, and D = 0, it follows that

G :





ξk+1 = ξk − αuk

yk = ξk

uk = ∇f(yk)

⇐====⇒ ξk+1 = ξk − α∇f(ξk) (GD)
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Introduction to Passivity

Definition (Passivity in Discrete Time [Desoer, Vidyasagar, 1975])
Consider a square system with input u ∈ ℓ2e and output y ∈ ℓ2e mapped through the operator
G : ℓ2e → ℓ2e. The system G is

▶ passive if ∃β ∈ R≤0 s.t.

⟨y, u⟩T ≥ β, ∀u ∈ ℓ2e, ∀T ∈ Z>0, (2)

▶ input strictly passive (ISP) if ∃δ ∈ R>0 and ∃β ∈ R≤0 s.t.

⟨y, u⟩T ≥ β + δ ∥u∥22T , ∀u ∈ ℓ2e, ∀T ∈ Z>0, (3)

▶ very strictly passive (VSP) if ∃δ, ε ∈ R>0 and ∃β ∈ R≤0 s.t.

⟨y, u⟩T ≥ β + δ ∥u∥22T + ε ∥y∥22T , ∀u ∈ ℓ2e, ∀T ∈ Z>0. (4)
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Passivity Theorem

∆
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Figure 1: The negative feedback interconnection of two systems G and ∆.

Theorem (Passivity Theorem [Desoer, Vidyasagar, 1975])
Consider two systems G : ℓ2e → ℓ2e and ∆ : ℓ2e → ℓ2e in negative feedback as per Figure 1.
▶ Strong: If G is passive, ∆ is VSP, and r1, r2 ∈ ℓ2, then y1, y2 ∈ ℓ2.

▶ Weak: If G is passive, ∆ is ISP, r1 ∈ ℓ2, and r2 = 0, then y1 ∈ ℓ2.
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Passivity Preserving Gain-Scheduling Architecture [Damaren, 1996]

Gi

G1

GN
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s1s1

sisi

sNsN

...
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...
...

+ +

+

uy

Gain-Scheduled System Ḡ

Figure 2: Gain-scheduling of N passive subsystems using scheduling
signals si, resulting in an overall passive gain-scheduled system Ḡ.
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Characterization of Passivity

Lemma (Passivity of an LTI [Hitz and Anderson, 1969])
A dynamical system of the form {

ξk+1 = Aξk + Buk,

yk = Cξk + Duk,

is passive if and only if ∃P = PT ≻ 0 such that
[

ATPA − P ATPB − CT

(
ATPB − CT

)T BTPB −
(
D + DT

)
]
⪯ 0. (5)

Remark ([Byrnes and Lin, 1994])
Discrete-time systems having outputs independent of uk (i.e., D = 0) can never be passive.
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Loop Transformation

∇f

GGD

+

−
+

+

(a) GD algorithm as a Lur’e problem.

∇f

GGD

D1

D1

−++

++ +

+

+

Modified GD Controller ḠGD

Modified Nonlinearity ∆̄

(b) Loop transformation of GD algorithm.
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When is ḠGD Passive?

ḠGD :

[
A B
C D

]
=

[
1 α1
1 D1

] Review ([Hitz and Anderson, 1969])
[

ATPA − P ATPB − CT

(
ATPB − CT

)T BTPB −
(
D + DT

)
]
⪯ 0 (5)

Lemma
The modified GD controller ḠGD is passive if and only if 0 < α/2 ≤ D.

Remark
Given a new algorithm with minimal realization (A,B,C,D), the LMI in (5) can numerically be
solved for P = PT ≻ 0 and D = D1.
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Passivity of ∆̄

∇f

D1
++

∆̄

Figure 4: Positive feedback interconnection of ∇f and D1 resulting in the discrete-time system ∆̄.
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Sector-Bounded Gradient
Definition (Function class Sm,L)
Denote the set of functions having a unique minimizer, x∗, and a sector-bounded gradient as Sm,L.

x

f(x)

L
=
10
0

m = 1
x

∇f(x)

Figure 5: The function f(x) = L−m
4

(
L+m
L−m

x2 + 2 sin(x)− 2x cos(x)
)
∈ Sm,L with m = 1 and L = 100. This

function is non-convex but has a sector-bounded gradient and a unique global minimizer at x∗ = 0
[Ugrinovskii, Petersen, Shames, 2022].
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Passivity of ∆̄

∇f

D1
++

∆̄

Figure 4: Positive feedback interconnection of ∇f and D1 resulting in the discrete-time system ∆̄.

Lemma
Given f ∈ Sm,L and D ∈ R>0, consider the positive feedback interconnection of ∇f and D1
resulting in the discrete-time system ∆̄ as per Figure 4.
▶ For D < 1/L, ∆̄ is VSP.
▶ For D = 1/L, ∆̄ is ISP.
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Main Result: Input-Output Stability of GD

∇f
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Figure 7: Loop transformation of the negative feedback interconnection representation of the GD method.

Theorem (Input-output stability of GD)
Consider the GD method shown in Figure 7, where f ∈ Sm,L and D = α/2.

i. Provided the step size α ∈ (0, 2/L), then ȳk1 , yk2 ∈ ℓ2.
ii. Provided the step size α = 2/L, then ȳk1 ∈ ℓ2.
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Figure 7: Loop transformation of the negative feedback interconnection representation of the GD method.

Theorem (Input-output stability of GD)
Consider the GD method shown in Figure 7, where f ∈ Sm,L and D = α/2.

i. Provided the step size α ∈ (0, 2/L), then xk −D∇f(xk) → x∗ and ∇f(xk) → 0.
ii. Provided the step size α = 2/L, then xk −D∇f(xk) → x∗.
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Extension to Time Varying Step Sizes

ξk+1 = ξk + ūk
1

ȳk
1 = ξk +Dūk

1

sksk
ūk
1ȳk1yk

1 uk
1

Modified GD Controller Ḡ

Gain-Scheduled Modified GD Controller ḠGS

Figure 8: Gain-scheduling a modified GD controller Ḡ with step size α = 1. The
scheduling function sk is used to scale the input and output of Ḡ.

The negative feedback interconnection of ḠGS and ∆̄ represents a variation on the GD algorithm
with the update rule

xk+1 = xk − sk∇f(skxk). (6)

▶ Provided maxk∈T |sk| ∈ (0,
√
2/L], then yk1 ∈ ℓ2.

▶ For a constant sk = s, the update rule in (6) can be written as x̄k+1 = x̄k − s2∇f(x̄k).
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Numerical Results
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Figure 9: #Iterations needed to achieve |∇f(xk)| < 10−12 using
105 uniformly sampled initial conditions for x0 ∈ [−105, 105].

Table 1: Corresponding Mean, Median, and Mode

Parameter Mean Median Mode
α = 2/(m + L) 28.36 27 23

s =
√

2/(m + L) 25.68 25 20

α = 2/L 32.12 31 27

s =
√

2/L 29.50 28 23

αk
btk 23.38 23 23

skbtk 24.08 23 21
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Summary
After performing a loop transformation:
▶ ḠGD is passive if and only if 0 < α/2 ≤ D.
▶ For f ∈ Sm,L, ∆̄ is

▶ VSP, for D < 1/L, or
▶ ISP, for D = 1/L.

For D = α/2, from the Passivity Theorem, it follows that:
▶ Provided α ∈ (0, 2/L), then xk −D∇f(xk) → x∗

and ∇f(xk) → 0.
▶ Provided α = 2/L, then xk −D∇f(xk) → x∗.

Gain-scheduling ḠGD using the scheduling function sk

results in the update rule

xk+1 = xk − sk∇f(skxk).
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Modified Nonlinearity ∆̄

Figure 10: Loop transformation
of GD algorithm
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