Input-Output Stability of Gradient Descent: A Discrete-Time
Passivity-Based Approach
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Inspiration from Gain-Scheduling

(a) Linearize the system about N = 3 points

(b) Synthesize controllers

(c) Gain-schedule the controllers
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Gain-Scheduling Optimization Algorithms

(a) Divide the domain of interest (b) Synthesize controllers (c) Gain-schedule the controllers
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Motivating Example [Polyak, 1987]
Given the Gradient Descent (GD) algorithm with the update rule

AL g an(mk), (1)
consider minimizing f(x) = éxQ over z € R with L > 0.

Remark

The GD algorithm converges to the minimum for any step size 0 < o < 2.

Question
What happens fora = 27

» The GD algorithm does not converge.
> However, it is still stable.
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Special Case of the Lur'e Problem [Lessard, Recht, Packard, 2015]

u = A
y* uf
¢! = A" + Bu”
g: k k k([
y =C¢" +Du

For the special case of A =1, B = —al, C =1, and D = 0, it follows that

£k:+1 _ Sk —od®
G:{ y=¢ —_— ¢t =¢" —avf(€®) (GD)
o = Vi)
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Introduction to Passivity

Definition (Passivity in Discrete Time [Desoer, Vidyasagar, 1975])

Consider a square system with input u € ¢,, and output y € ¢,, mapped through the operator
G : 4y, — £y,. The system G is

> passive if 33 € R, s.t.

(y,wp > 3, Yu € by, VT € Z, 2)

> input strictly passive (ISP) if 36 € R_, and 33 € R s.t.
(yup>p8+0 ”u”;Ta Va € by, VT € Zy,, 3)

> very strictly passive (VSP) if 35,6 € R, and 33 € R s.t.

(y,u)p > B+6ullor +ellylsr,  Vu€ by, VT € Zy,. (4)
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Passivity Theorem
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Figure 1: The negative feedback interconnection of two systems G and A.

Theorem (Passivity Theorem [Desoer, Vidyasagar, 1975])

Consider two systems G : ¢,, — {5, and A : {,, — ¢, in negative feedback as per Figure 1.
» Strong: If G is passive, A is VSP, andr,,r, € {5, theny,,y, € (5.
> Weak: If G is passive, A is ISP, r, € {,, andr, =0, theny, € (,.
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Passivity Preserving Gain-Scheduling Architecture [Damaren, 1996]

Gain-Scheduled System G
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Figure 2: Gain-scheduling of N passive subsystems using scheduling
signals s;, resulting in an overall passive gain-scheduled system G.
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Characterization of Passivity

Lemma (Passivity of an LTI [Hitz and Anderson, 1969])
A dynamical system of the form

£k+1 _ Ask -I-Bllk,
yk = CEk + Duk,
is passive if and only if 3P = PT = 0 such that

ATPA — P ATPB-CT
[(ATPB —cn" BPB- (D +DT)| " ©)

Remark ([Byrnes and Lin, 1994])

Discrete-time systems having outputs independent of u* (i.e., D = 0) can never be passive.
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Loop Transformation
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(a) GD algorithm as a Lur’e problem.
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Modified Nonlinearity A
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Modified GD Controller G

(b) Loop transformation of GD algorithm.
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When is Ggp Passive?

_ [A[B] [1]a
Yoo : | ¢ |D| [ 1]|D1 [ ATPA - P ATPB - CT
(ATPB—CT)' BTPB— (D+D")

The modified GD controller G, is passive if and only if 0 < a/2 < D. I

}50 (5)

Given a new algorithm with minimal realization (A, B, C,D), the LMl in (5) can numerically be
solved forP =P'" = 0 andD = D1.
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Passivity of A
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Figure 4: Positive feedback interconnection of V f and D1 resulting in the discrete-time system A.
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Sector-Bounded Gradient

Definition (Function class S,, 1)
Denote the set of functions having a unique minimizer, x*, and a sector-bounded gradient as S,,, .. J
f(@) V() e
m=1 4
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Figure 5: The function f(z) = L= (gj:;; 22 + 2sin(z) — 2z cos(:c)) € S, With m = 1 and L = 100. This
function is non-convex but has a sector-bounded gradient and a unique global minimizer at z* = 0

[Ugrinovskii, Petersen, Shames, 2022].
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Passivity of A
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Figure 4: Positive feedback interconnection of V f and D1 resulting in the discrete-time system A.

Lemma

Given f € S,,, ;, and D € R, consider the positive feedback interconnection of V f and D1
resulting in the discrete-time system A as per Figure 4.

» ForD < 1/L, A is VSP,
» ForD=1/L, A is ISP
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Main Result: Input-Output Stability of GD
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Figure 7: Loop transformation of the negative feedback interconnection representation of the GD method.

Theorem (Input-output stability of GD)

Consider the GD method shown in Figure 7, where f € S,, | and D = /2.
i. Provided the step size a € (0,2/L), theny%,y5 € (.
ii. Provided the step size o = 2/L, theny% € (,.
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Main Result: Input-Output Stability of GD
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Figure 7: Loop transformation of the negative feedback interconnection representation of the GD method.

Theorem (Input-output stability of GD)

Consider the GD method shown in Figure 7, where f € S,, | and D = /2.
i. Provided the step size a € (0,2/L), thenx* — DV f(x*) — x* and V f(x*) — 0.
ii. Provided the step size a = 2/L, then x* — DV f(x*) — x*.
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Extension to Time Varying Step Sizes

Gain-Scheduled Modified GD Controller Gg
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Figure 8: Gain-scheduling a modified GD controller G with step size a = 1. The

scheduling function s* is used to scale the input and output of G.

The negative feedback interconnection of G55 and A represents a variation on the GD algorithm
with the update rule
X =xP — Pt (6)

» Provided max,.|s*| € (0,+/2/L], then y¥ € £,.
» For a constant s* = s, the update rule in (6) can be written as x**1 = x¥ — 52V f(x).
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Numerical Results
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Figure 9: #lterations needed to achieve |V f(z*)| < 10~'2 using
105 uniformly sampled initial conditions for z° € [~10%, 10°].
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Table 1: Corresponding Mean, Median, and Mode

Parameter Mean Median Mode
a=2/(m+L) 28.36 27 23
s =+/2/(m+ L) 25.68 25 20
a=2/L 32.12 31 27
s =+/2/L 29.50 28 23
apy 23.38 23 23
st 24.08 23 21
ACC 2025: Denver 17/18



Summary
After performing a loop transformation: B
> Ggp is passive if and only if 0 < /2 < D. Modified Nonlinearity A

> ForfeS,, ., Als —>(n vf
» VSP, for D < 1/L, or +4 '+
> ISP, for D =1/L. |

For D = «/2, from the Passivity Theorem, it follows that:

» Provided a € (0,2/L), then x* — DV f(x*) — x*
and Vf(x*) = 0.

| D1 |« |
» Provided a = 2/L, then x* — DV f(x*) — x*. l + |
| Loy
! < Gop [« 1 ()é

Gain-scheduling G, using the scheduling function s* B R !

results in the update rule Modified GD Controller G,
k+1 _ ko k k_k Figure 10: Loop transformation
X X =SV f(sTX), of GD algorithm
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